FEMhub, a Free Distribution of Open Source Finite Element Codes with Unified Python Interface

P. Solin, O. Certik, M. Hanus, M. Paprocki, A. Poudel, S. Regmi
University of Nevada, Reno

http://femhub.org

SIAM CSE meeting
February 28 - March 4, 2011, Reno, NV
Open-source distribution of Finite Element (FEM) codes with a unified Python interface

Motivation:

- Open source FEM codes scarcely used outside of academia.
- 95% of all FEM simulations are done using commercial FEM software.
- Why is this?
Open-source distribution of Finite Element (FEM) codes with a unified Python interface

Motivation:

- Open source FEM codes scarcely used outside of academia.
- 95% of all FEM simulations are done using commercial FEM software.
- Why is this?
- Would you care about an ad that offers an apartment for $20 / month?
Open-source distribution of Finite Element (FEM) codes with a unified Python interface

Motivation:

- Open source FEM codes scarcely used outside of academia.
- 95% of all FEM simulations are done using commercial FEM software.
- Why is this?
- Would you care about an ad that offers an apartment for $20 / month?
- Or a car for $20?
Motivation:
- Open source FEM codes scarcely used outside of academia.
- 95% of all FEM simulations are done using commercial FEM software.
- Why is this?
- Would you care about an ad that offers an apartment for $20 / month?
- Or a car for $20?
- **Lack of fidelity.** ("What can I expect if I do not pay anything?")
Open-source distribution of Finite Element (FEM) codes with a unified Python interface

Motivation:
- Open source FEM codes scarcely used outside of academia.
- 95% of all FEM simulations are done using commercial FEM software.
- Why is this?
- Would you care about an ad that offers an apartment for $20 / month?
- Or a car for $20?
- **Lack of fidelity.** ("What can I expect if I do not pay anything?")
- Fidelity can be gained, but this is not easy (at all).
Open-source distribution of Finite Element (FEM) codes with a unified Python interface

Motivation:
- Open source FEM codes scarcely used outside of academia.
- 95% of all FEM simulations are done using commercial FEM software.
- Why is this?
- Would you care about an ad that offers an apartment for $20 / month?
- Or a car for $20?
- Lack of fidelity. ("What can I expect if I do not pay anything?")
- Fidelity can be gained, but this is not easy (at all).

Our Goal: Establish Fidelity for Open Source FEM Software
- Reduce heterogeneity in installation and usage
- Make them widely available (to masses, not only to scientists)
- Facilitate interoperability and comparisons
- Improve reproducibility of results
Open Source FEM Codes

- ALBERTA
- CalculiX
- deal.II
- GetFEM++
- Freefem++
- FEMM
- FETK
- FEMPACK
- FiPy
- OOF
- OFELI
- Phaml
- libMesh
- Code Aster
- DUNE
- FEBio
- Elmer
- FEniCS
- Hermes
- OOFEM
- OpenSees
- OpenFOAM
- ...

hp-FEM group, University of Nevada, Reno
FEMhub: http://femhub.org
Heterogeneity I:

- Operation systems
 - Linux
 - Windows
 - Mac

- Programming languages
 - C/C++
 - Java
 - Fortran
 - Python
 - (even functional languages)

- Download formats
 - *.tgz
 - svn
 - Mercurial
 - Git

- Quality of documentation, examples, tests, ...
Heterogeneity II:

- Dependencies & Interfaces & I/O formats
 - Geometry modeling
 - Mesh generation
 - Matrix solvers
 - Postprocessing
 - Visualization

- FEM technology
 - 2D / 3D / 2D & 3D
 - Simplicial elements (triangles, quadrilaterals)
 - Product elements (quads, bricks, prisms, pyramids)
 - Cartesian / distorted meshes
 - Structured / unstructured meshes
 - Low-order / higher-order
 - Nonadaptive / adaptive

- Problem types
 - First-order / second-order
 - Linear / nonlinear
 - Stationary / time-dependent
 - Scalar / vector-valued
 - Real / complex

hp-FEM group, University of Nevada, Reno

FEMhub: http://femhub.org
Heterogeneity III:

- Physics models
 - Heat transfer
 - Electrostatics
 - Electromagnetics
 - Time-domain
 - Frequency-domain
 - Solid mechanics
 - Elasticity
 - Visco-elasticity
 - Plasticity
 - Fluid mechanics
 - Inviscid / viscous
 - Compressible / incompressible
 - Laminar / turbulent
 - Newtonian / non-newtonian

- Single-physics / multiphysics
Benchmark = problem where exact solution is available

Sample benchmarks for elliptic PDE:

Benchmark = problem where exact solution is available

Sample benchmarks for elliptic PDE:

Response to Mitchell’s paper:

Sample papers.
Benchmarks in Hermes

To become part of FEMhub.

hp-FEM group, University of Nevada, Reno

FEMhub: http://femhub.org