# Dot products in numpyΒΆ

If I have two vectors $$\mathbf{a}$$ with elements $$a_0, a_1, ... a_{n-1}$$, and $$\mathbf{b}$$ with elements $$b_0, b_1, ... b_{n-1}$$ then the dot product is defined as:

$\mathbf{a}\cdot \mathbf{b} = \sum_{i=0}^{n-1} a_ib_i = a_0b_0 + a_1b_1 + \cdots + a_{n-1}b_{n-1}$

In code:

>>> a = np.arange(5)
>>> b = np.arange(10, 15)
>>> np.dot(a, b)
130


We could do exactly the same calculation using elementwise multiplication followed by a sum:

>>> np.sum(a * b)  # Elementwise multiplication
130


Matrix multiplication operates by taking dot products of the rows of the first array (matrix) with the columns of the second.

Let’s say I have a matrix $$\mathbf{X}$$, and $$X_{i,:}$$ is row $$i$$ in $$\mathbf{X}$$. I have a matrix $$\mathbf{Y}$$, and $$Y_{:,j}$$ is column $$j$$ in $$\mathbf{Y}$$. The output matrix $$\mathbf{Z} = \mathbf{X} \mathbf{Y}$$ has entry $$Z_{i,j} = X_{i,:} \cdot Y_{:, j}$$.

>>> X = np.array([[0, 1, 2], [3, 4, 5]])
>>> X
array([[0, 1, 2],
[3, 4, 5]])

>>> Y = np.array([[7, 8], [9, 10], [11, 12]])
>>> Y
array([[ 7,  8],
[ 9, 10],
[11, 12]])


The numpy array dot method does this operation:

>>> X.dot(Y)
array([[ 31,  34],
[112, 124]])

>>> X[0, :].dot(Y[:, 0])
31

>>> X[1, :].dot(Y[:, 0])
112